Interval Similarity-Based Quantization Method for Continuous Data

نویسندگان

  • Zhenhua Jia
  • Haohan Xie
  • Ye Liang
چکیده

Data quantization methods for continuous attributes play an extremely important role in artificial intelligence, data mining and machine learning because discrete values of attributes are required in most classification methods. In this paper, we present an interval similarity-based quantization method for continuous data. It defines an interval similarity criterion which is regarded as a new merging standard in the process of quantization. In addition, a heuristic quantization algorithm is proposed to achieve a satisfying quantization result with the aim to improve the performance of inductive learning algorithms. The new algorithm realizes fair standard and quantifying the real value attributes exactly and reasonably. Empirical experiments on UCI real data sets show that our proposed algorithm generates a better quantization scheme that improves the classification accuracy of inductive learning than existing quantization algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Mode Signal Quantization for Use in Sigma-Delta Modulators

The rapid scaling in modern CMOS technology has motivated the researchers to design new analog-to-digital converter (ADC) architectures that can properly work in lower supply voltage. An exchanging the data quantization procedure from the amplitude to the time domain, can be a promising alternative well adapt with the technology scaling. This paper is going to review the recent development in t...

متن کامل

Detection of perturbed quantization (PQ) steganography based on empirical matrix

Perturbed Quantization (PQ) steganography scheme is almost undetectable with the current steganalysis methods. We present a new steganalysis method for detection of this data hiding algorithm. We show that the PQ method distorts the dependencies of DCT coefficient values; especially changes much lower than significant bit planes. For steganalysis of PQ, we propose features extraction from the e...

متن کامل

A note on "An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts"

The technique for order of preference by similarity to ideal solution (TOPSIS) is a method based on the ideal solutions in which the most desirable alternative should have the shortest distance from positive ideal solution and the longest distance from negative ideal solution. Depending on type of evaluations or method of ranking, different approaches have been proposing to calculate distances ...

متن کامل

Universal Approximation of Interval-valued Fuzzy Systems Based on Interval-valued Implications

It is firstly proved that the multi-input-single-output (MISO) fuzzy systems based on interval-valued $R$- and $S$-implications can approximate any continuous function defined on a compact set to arbitrary accuracy.  A formula to compute the lower upper bounds on the number  of interval-valued fuzzy sets needed to achieve a pre-specified approximation  accuracy for an arbitrary multivariate con...

متن کامل

SHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS

Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JNW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013